COMP302: Software Engineering
Spring 2015
Online
SYLLABUS

COURSE DESCRIPTION
Analysis, design, implementation, and testing of a medium-scale software system as a member of a project team. Significant real-world group projects covering all the phases of software of development life cycle using high-level automated analysis and design tools. Experience with other important skills such as fact-finding, communications, and project management

CREDITS: 5

OBJECTIVES
This course fulfills suggested curriculum requirements of ACM, IEEE, and the Computer Science Accreditation Board for Computer Science departments. The course will provide the student with an overview of the tools and techniques of software engineering.

This course is designed to prepare the student to able to join a team involved in software development projects and quickly become productive in that environment.

The course will provide the student with experience in system documentation by incorporating a major project that is to be completed by the students throughout the course of the semester. This project will involve significant writing, programming, and presentation/speaking as the students design, implement, and test their solutions. Each team will be expected to present its solution to the class providing the students an opportunity to prepare and deliver a technical presentation.

Object-Oriented development has become a hot topic in software development. This course explains object-oriented development by presenting the basic principles. It then introduces object-oriented analysis as a way of modeling user requirements and possible software solutions, and as a means of implementing the results, of offering possible software solutions, and as a means of implementing the results of object-oriented analysis. Transition from analysis to design is discussed along specific design techniques. Prototypical object-oriented programming languages are introduced and compared.

Upon completion of this course the student should be:

• describe a phased approach to information systems development and describe cross-life cycle activities that overlap the entire cycle.
• to present a technical material to a group.
• to create precise and informative documents for each stage of software development.
• to apply several approaches to software design such as data flow oriented, data structure oriented, and object oriented techniques.
• understand the importance of quality assurance and reliability of software systems.
• understand the process of graphic user interface(GUI) and dialogues design using Visual C# or Visual Basic.NET
• access relational data using ADO.NET
• apply object-oriented techniques to Visual C# or VB.NET programs

Educational Objectives
• Broaden existing software design and programming skills using current methodologies.
• Enhance existing software document skills
• Incorporate design-for-maintainability considerations through appropriate project work
• Professional Objectives
• Exposure to design and programming technology that is widely-used in industrial and research environments.
• Enhance planning and time management skills by making students work through a significant project with multiple, staged deliverables.
• To provide a practical software development techniques that will prepare graduates to lead large software projects in industry.
• Define the systems analyst role and responsibilities in a typical organization.
• Prepare and use various information gathering techniques for eliciting user information requirements and system expectations.
• Develop a better plan for becoming a better systems professional or user/manager of systems, by understanding personal strengths and weaknesses and matching those with the ethical success factors of a modern business manager.
• Write a formal technical or professional report that organizes a systems documentation
COURSE OVERVIEW

How to specify requirements using Use Cases
How systems are specified using Object, Interaction and Dynamic Models
How to build an object oriented solution based on a suitable target system architecture
How to specify, design, build and deliver a two-tier client/server and a three-tier application systems.

Instructor: Martin Dwomoh-Tweneboah
E-mail: mdwomoh@linfield.edu

Software: Visio, Microsoft Project, Visual Studio.NET, Microsoft SQL, Visible Analyst

COURSE MATERIALS

Assignments, quizzes, and other relevant course materials will be posted on the course web page – http://bblearn.linfield.edu. It is your responsibility to check the web page for due dates and course materials on regular basis.

ASSIGNMENTS

General Information
Several short homework assignments will be given throughout the semester.
- Homework assignments will be posted on the course website.
- Except for occasional supplementary materials, hard copies of the assignments will not be provided.
- It is your responsibility to check the course website for any materials relating to the course and to keep track of upcoming assignments, quizzes and midterms.
- Homework is due at the beginning of class on the due date.
 - You are expected to have completed the assignment before you arrive in class.
 - You will have a 30-minute window after the class during which you may turn in your assignment with no penalty.

Assignment Management
The Bachelor of Science Computer Science major focuses on decision-making skills, oral and written communications, the values and uses of information systems, project development and completion via teams, competency in a programming language and application development, familiarity with systems analysis and design, the completion of a systems development project and the use of the computer as a tool, hence a thorough understanding of the various platforms and operating systems.

The curriculum is designed to produce graduates ready to function in the computer industry with the competencies, skills, and attitudes necessary for success in the workplace or graduate school. It forms the basis for continued career growth, life-long learning as a computer professional or a future graduate program. Among other important skills for administrators and managers are time management and resource allocation. Specifically, appropriate attention to time management and resource allocation will aid you in meeting task deadlines with available resources. These skills will be important to your success in administration or management and to your success in this degree program. This syllabus describes course assignments and defines assignment due dates. Your effective use of time management and resource allocation will be key in meeting the assignment deadlines for both individual and study group assignments. From my own experience, I offer the suggestion that your time management plan include time for yourself and your academic work.

Late Assignments
In the general case, late assignments will not be accepted for grading. ALL ASSIGNMENTS MUST BE SUBMITTED IN CLASS ON THE DUE DATE (normally the Saturday of the weekend we meet). If you know you must be absent from a class session, you should take appropriate steps to ensure that your assignments are delivered on or before the scheduled due date and time. I will not accept any excuse for late delivery. In addition to submitting a hard copy, you must also keep electronic copies of all assignments in a folder in your home directory on nova.

Assignment Format
Written assignments should be submitted, typed on 8-1/2 x 11 paper, one sided only, stapled in the upper left corner, and should be done neatly so that it is: (a) easy to grade, and (b) useful as a study aid. Assignments submissions that do not meet minimal standards for acceptability in the workplace (completeness, neatness, readability, etc.) will be returned ungraded.

QUizzes
Quizzes are conducted during the class meeting and at times as take-home. Some quizzes will be announced and at times occasional unannounced quizzes will be given to help ensure you stay up with assigned materials. Quiz questions will often be selected from or derived from the textbook. I will not give make-up exams and quizzes.

Course Project
The course is accompanied by a semester-long course project. It is recommended that you start working on the project as soon as the relevant materials are covered in class.

Grading
Your performance in this class will be measured by various assignments, quizzes, and the deliverables for the course project. Written assignments should be done neatly, typed, stapled in the upper left corner, so that it is: (a) easy to grade, and (b) useful as a study aid. Assignments submissions that do not meet minimal standards for acceptability in the workplace (completeness, neatness, readability, etc.) will be returned ungraded.

Grading Scale:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>A</td>
</tr>
<tr>
<td>90 – 94</td>
<td>A-</td>
</tr>
<tr>
<td>85 – 89</td>
<td>B+</td>
</tr>
<tr>
<td>80 – 84</td>
<td>B</td>
</tr>
<tr>
<td>75 – 79</td>
<td>B-</td>
</tr>
<tr>
<td>70 – 74</td>
<td>C+</td>
</tr>
<tr>
<td>65 – 69</td>
<td>C</td>
</tr>
<tr>
<td>60 – 64</td>
<td>C-</td>
</tr>
<tr>
<td>50 – 59</td>
<td>D</td>
</tr>
<tr>
<td>Below 50</td>
<td>F</td>
</tr>
</tbody>
</table>

Delivery Format
This is an online course and all course materials, announcements, assignments, etc., can be found on Blackboard at http://bblearn.linfield.edu. It is your responsibility to check the web page on regular basis.

Extra Credit Policy
There will not be any extra credit in this course. There are a lot of assessment exercises in this course for you to catch up with areas you don’t perform well. Therefore, don’t bank on extra credit to improve your grades.

Academic Honesty
Cheating and plagiarism will not be tolerated. Any student found to be engaging in either of these activities at any point in the course will receive a failing grade for the entire course and may be subject to further college sanctions. It is very important that you adhere to the college policy on academic honesty, as published in the Linfield College Course Catalog.

Classroom and Group Discussions
Study groups are highly recommended for a course of this kind. However, copying someone’s work for presentation will be treated as academic dishonesty. Active involvement of each student in class discussions and exercises are essential. Class attendance and active participation are expected and required in this course. Absences or lack of participation generally reduces a learner's aggregate point score and thus may affect a learner's final grade.

We must assume that we are all persons of intelligence and good will who are here to learn from each other in a team environment. Group discussions should not be a forum to impose our ideas on others. For the academic endeavor to succeed, we must treat each other with civility, courtesy and respect. Software development involves team work and all contributions by group members should be discussed and analyzed thoroughly.
DIFFICULTIES
If you find you are having problems with the class – the use of the software package, case tool, attendance, keeping up with the reading, fitting into a group, please let me know. I am always available to help you, but I have to know about the problem while it’s going on and before the end of the course. The last few weeks to the end of the course is not the best time to ask for help.

STUDENTS WITH DISABILITIES POLICY
Students with disabilities are protected by the Americans with Disabilities Act and Section 504 of the Rehabilitation Act. If you are a student with a disability and feel you may require academic accommodations please contact Learning Support Services (LSS), as early as possible to request accommodation for your disability. The timeliness of your request will allow LSS to promptly arrange the details of your support. LSS is located in Melrose Hall 020 (503-883-2562).

Students with documented disabilities who may need accommodations for taking quizzes and tests, who have any emergency medical information I should know of, or who need special arrangements in the event of an evacuation, should make an appointment with me as early as possible, no later than the second week of the semester.

COURSE OUTLINE

Course Expectations
Outcome: After this session, student should understand the scope and requirements of this course as well as the knowledge and skills need to be mastered to succeed in this course
Introduction to the software tools to be used.

Software Development Life Cycle and Software Management
Outcome: After this session the student should be able to:
• identify the various phases of a development life cycle – requirements analysis, analysis phase, design phase, coding phase, testing phase.

The vocabulary of Object Oriented Technology and The Unified Modeling Language Notations
Outcome: At the end of this session, students should be able to:
• understand the concepts and vocabulary of object technology
• visualize and identify the various notations used in the Unified Modeling language

Requirements Gathering
Outcome: At the end of this session, students should be able to:
• Understand the techniques used in gathering information about the systems functionalities.

System Behavior – Use Cases
Analysis of the needed system behavior from a use case approach
Development of scenarios for use cases
Outcome: At the end of the session, students should be able to
• capture system requirements using Use Cases.

Finding Classes
Application of use case analysis to discover classes in the system
Definition of relationships needed for object interaction
Operations and Attributes
Definition of class structure and behavior
Outcome: At the end of the session, student should be able to:
• capture system requirements using object-oriented concepts, including classes, objects, attributes, operations, relationships and multiplicity

Sequence and collaboration diagrams
Development of state transition diagrams to graphically show the behavior of an object
Outcome: At the end of the session, students should be able to:
• create sequence and Collaboration diagrams with a Visual Modeling tool
• create state diagrams with a Visual Modeling tool
User interface design and Accessing the Database Using Visual C# or Visual Basic.NET

Outcome: At the end of the session, students should be able to:
- Apply appropriate user interface strategies to a system.
- Use the design models to plan and coordinate a user interface.

Select proper screen-based controls for input attributes that are to appear on a GUI input screen.

Programming with Microsoft ADO.NET

Outcome: At the end of the session, students should be able to:

Build data-centric applications with Microsoft® ADO.NET, Microsoft® SQL Server™ 2012, and the Microsoft® .NET Framework.

Testing and Deployment

Outcome: At the end of the session, students should be able to:
- understand the purpose and effectiveness of various testing strategies.