Navigation

Biology

Microscope
Linfield Home » Arts & Sciences » Biology » Faculty Details
faculty image

Catherine Reinke - Assistant Professor

Murdock 212
503-883-2363
creinke@linfield.edu

https://catfiles.linfield.edu/People/Faculty/creinke/public/index.htm

Education: B.A., Biology and English, Carleton College; Ph.D., Molecular Genetics and Cell Biology, University of Chicago

Academic Interests:
I am interested in how cells use their genomes. Specifically, my lab is interested in furthering our understanding of the cellular mechanisms and developmental roles of microRNAs, one class of small, non-coding ribonucleic acid (RNA) essential to plants and animals. I am also interested in facilitating public understanding and appreciation of science and scientific research.

Publications:


  • Pressman S, Reinke CA, Wang XH and RW Carthew. (2012). A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila. Genes Genomes Genetics 2(4):437-48.

  • Cassidy J, Li X, Reinke CA and RW Carthew. (2009). A microRNA imparts robustness against environmental fluctuation during development. Cell 137(2):273-82.

  • Reinke CA and RW Carthew. (2008). BMP signaling goes posttranscriptional in a microRNA sort of way. Developmental Cell 15(2):174-175.

  • Reinke CA and SR Singer. (2007). From Observers to Participants: joining the scientific  community. Building Intellectual Community through Collaboration. College City Publications, Northfield, MN.

  • Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ and  BS Glick. (2006). Golgi Maturation in Living Yeast. Nature 441(7096):1002-6.

  • Reinke CA, Kozik P and BS Glick. (2004). Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Proc Natl Acad Sci U S A. 101(52):18018-23.

  • Soderholm J, Bhattacharyya D, Strongin D, Markovitz V, Connerly PL, Reinke CA and BS Glick. (2003). The transitional ER localization mechanism of Pichia pastoris Sec12. Developmental Cell 6(5):649-59.

  • Bevis BJ, Hammond AT, Reinke CA and BS Glick. (2002). De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nature Cell Biology (10):750-6.

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O'Connor J and BS Glick. (2001). A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. Journal of Cell Biology 153(1):47-62.

  • Singer S, Sollinger J, Maki S, Fishbach J, Short B, Reinke C, Fick J, Cox L, McCall A and H. Mullen. (1999). Inflorescence Architecture: a developmental genetics approach. Botanical Review 65:385-410.

Lab Introduction:

My lab is trying to determine exactly how cells silence genes through the process of RNA interference (RNAi). Specifically, we investigate microRNAs (miRNAs), a class of small, non-coding RNA molecules that silence gene expression. miRNAs and RNAi are of great interest to those at the interface of basic research and medicine, in part because aberrant miRNA profiles are emblematic of numerous disease states, and RNAi-based therapeutics are currently being developed. Determining the fundamental principles of miRNA-mediated gene silencing in biological pathways is essential to the success of RNAi-based therapeutics, which employ the common machinery of gene silencing.

At present, key molecules in the miRNA pathway have been discovered, but identification and characterization of downstream and regulatory factors is lacking. My lab is carrying out genetic and biochemical studies in Drosophila melanogaster to identify and characterize requirements for miRNA activity, in order to elucidate the mechanism of miRNA activity in vivo. My goal is to conduct research that furthers our understanding of biology while engaging and inspiring students.

Specifically, the work of my lab members is guided by two broad questions: 1. How do organisms orchestrate miRNA function and regulation in vivo? and 2. What are the roles of specific miRNAs in the Drosophila visual system?